新型钠电池正极材料实现十万次超长循环寿命
近年来,钠离子电池凭借其原材料资源储备丰富、提取成本较低、自主可控等优势,正加速从实验室迈向产业化,有望与锂离子电池在储能领域形成互补,展现出了巨大的发展潜力和广阔的应用前景。
近日,中国科学院院士、南方科技大学机械与能源工程系讲席教授赵天寿,副研究员韩美胜,副教授曾林团队提出了一种集成聚阴离子和层状氧化物的复合正极用于钠离子电池,实现了十万圈循环寿命,容量保持率达72.6%,为长寿命、低成本钠离子电池设计策略带来新思路。相关成果发表在国际能源顶尖期刊《能源与环境科学》上。
研究示意图 南科大供图
突破长循环寿命极限
锂离子电池凭借其高能量密度、长循环寿命和成本持续降低的优势,被广泛应用于电动汽车、储能系统等新能源领域。然而,锂资源短缺的问题制约了其发展,进一步促使研究人员和产业界探索替代技术。
钠资源丰富,成本低,且与锂同族,化学性质相似,有望成为锂的有力补充。此外,研究发现钠离子电池在低温性能、安全性方面优势突出,其性能特征和市场前景已被市场充分认知,被认为是最有潜力的新型储能电池之一。然而,传统钠离子电池正极材料存在明显短板,聚阴离子型化合物稳定性高但容量低,层状氧化物容量高却易受空气和水汽侵蚀,且循环稳定性差。
在该研究中,该团队设计了一种嵌入多孔碳框架的聚阴离子-层状氧化物复合正极,该正极由富钠聚阴离子化合物和层状氧化物组成原位共生双相异质结构,经过优化后显著提升了钠离子存储性能。
研究团队创新性地将聚阴离子型化合物和层状氧化物结合,通过铁掺杂降低磷酸钒钠的带隙,激活钒元素的氧化还原反应,提升导电性和比容量;同时引入多孔碳骨架,增强电子传导并缓冲体积膨胀。此外,低应变的层状氧化物相作为“稳定剂”,有效缓解充放电过程中的结构应力。
论文第一作者、南科大机械与能源工程系硕士生邹支宇介绍,该复合正极在0.1C倍率下可逆容量达130mAh/g,100C高倍率的电流密度下,循环十万次后容量保持率为72.6%,远超当前聚阴离子型正极的寿命极限,比绝大多数的报道高出一个数量级。团队还成功制备出安时级软包电池,能量密度达153.4Wh/kg,循环寿命超500次,为后续工程化验证奠定基础。
钠电产业迎来广阔发展机遇
当前,全球范围内,钠电池市场规模正呈现快速增长态势。根据《2024中国钠离子电池报告》数据显示,当前,钠离子电池在全球范围内已实现了小规模生产以及特定场景的示范应用,2023年全球市场规模达3.2亿美元,预计到2030年将接近10亿美元。
近年来,我国高度重视钠离子电池的研发应用。2022年,钠离子电池被列入《“十四五”能源领域科技创新规划》;2023年,工信部等六部门联合发布《关于推动能源电子产业发展的指导意见》,明确加强新型储能电池产业化技术攻关。
“从电池全生命周期来看,长寿命正极材料有望进一步推动钠离子电池在储能领域的应用和发展。”论文第一通讯作者、南科大副研究员韩美胜介绍,研究团队通过将钠离子电池正极的两个主要体系-聚阴离子和层状氧化物正极桥接起来,表明集成正极中的协同效应可以推动高能量密度、快速充电和长循环寿命正极的开发,并拓宽了未来正极研究的组成空间。
这种长寿命、低成本的钠离子电池正极设计策略展现了其在未来大规模储能系统中的广泛应用前景。
”尽管钠资源储量是锂的千倍,但与锂电池相比其产业链尚未成熟,研发时间较短。目前钠离子电池大规模商业化的核心挑战在于成本高、能量密度低以及循环寿命短。”韩美胜表示,当前钠离子电池硬碳负极容量低、首效低、循环寿命相对较短以及电解液成本高等制约了钠电池的产业应用,推动钠离子电池的发展需要多线并进。目前研究团队正在积极探索适配这款长寿命正极的负极材料和电解液体系,以完善长寿命钠离子电池研发体系。未来,随着技术迭代与政策支持,钠离子电池有望成为大规模储能的主力军,助力我国实现“双碳”目标与能源安全战略。(来源:中国科学报 刁雯蕙)
相关论文信息:https://doi.org/10.1039/D4EE05110F