当前位置:首页 >期刊论文 >《最新论文》>正文

利用原子点阵列进行大规模模拟量子模拟

 2026/2/9 8:56:29 《最新论文》 作者:科学网 小柯机器人 我有话说(0人评论) 字体大小:+

近日,澳大利亚新南威尔士大学悉尼分校M. B. Donnelly团队实现了利用原子点阵列进行大规模模拟量子模拟。该研究于2026年2月4日发表在《自然》杂志上。

为实现具有实际价值的量子优势,类比量子系统为模拟量子材料物理、非平衡量子系统及相互作用诱导的局域化现象提供了重要途径。近年来,超冷原子、超导电路和扭曲范德华材料等领域在实现此类系统方面取得了显著进展。然而,现有平台仍难以模拟低温下的大规模强相互作用费米子系统——该温度区间内电子关联主导材料性质,而数值模拟在精度和范围上仍受限。

研究组展示了一种新型平台的实现方案:通过亚纳米精度设计的大规模二维原子量子点阵列(15,000个位点)来模拟强相互作用的低温物理现象。通过在原子量子点构成的二维正方晶格中观测金属-绝缘体(MI)转变,研究组实现了对在位相互作用强度U与隧穿强度t的独立精准调控。磁输运测量进一步表明,绝缘态的形成受莫特-哈伯德/安德森物理机制驱动,并显示出关联电子物理学的显著特征。这种精密设计的类比量子模拟器为在任意二维晶格上模拟量子材料提供了独特平台,将助力探索量子磁性的形成机制、相互作用的拓扑量子物质及非常规超导电性等众多未解难题。

附:英文原文

Title: Large-scale analogue quantum simulation using atom dot arrays

Author: Donnelly, M. B., Chung, Y., Garreis, R., Plugge, S., Pye, D., Kiczynski, M., Tmara-Isaza, J., Munia, M. M., Sutherland, S., Voisin, B., Kranz, L., Hsueh, Y. L., Huq, A. M. Saffat-Ee, Myers, C. R., Rahman, R., Keizer, J. G., Gorman, S. K., Simmons, M. Y.

Issue&Volume: 2026-02-04

Abstract: In pursuit of a practical quantum advantage1, analogue quantum systems provide an invaluable way to simulate the physics of quantum materials2,3,4, quantum systems out of equilibrium5,6 or interaction-induced localization7. Notable recent progress to realize such systems has been achieved in ultracold atoms8,9,10,11,12, superconducting circuits13,14,15 and twisted van der Waals materials16,17,18,19. However, so far, these platforms have struggled to simulate large-scale strongly interacting fermionic systems at low temperatures, at which electronic correlations dominate materials properties and numerical simulations remain restricted in accuracy and scope20,21. Here we demonstrate the realization of a new platform consisting of large-scale 2D arrays of sub-nanometre precision-engineered atom-based quantum dots (15,000 sites) to simulate strongly interacting, low-temperature physics. By observing a metal–insulator (MI) transition on a 2D square lattice of atom-based quantum dots, we demonstrate independent and precise control of the on-site interaction U and tunnelling t. Magneto-transport measurements further indicate the formation of an insulating state driven by Mott–Hubbard/Anderson physics and promising signatures of correlated electron physics. These precision-engineered analogue quantum simulators provide a unique platform to simulate quantum materials on arbitrary 2D lattices and to explore many unanswered questions in the formation of quantum magnetism, interacting topological quantum matter and unconventional superconductivity.

DOI: 10.1038/s41586-025-10053-7

Source: https://www.nature.com/articles/s41586-025-10053-7

版权声明:本文转载仅仅是出于传播信息的需要,并不意味着代表本网站观点或证实其内容的真实性;如其他媒体、网站或个人从本网站转载使用,须保留本网站注明的“来源”,并自负版权等法律责任;作者如果不希望被转载或者联系转载稿费等事宜,请与我们接洽。