磁旋涡中的自激Floquet磁振子
近日,德国德累斯顿-罗斯多夫亥姆霍兹中心Helmut Schultheiss团队研究了磁旋涡中的自激Floquet磁振子。相关论文于2026年1月8日发表在《科学》杂志上。
用周期性电磁场驱动凝聚态物质系统可产生平衡态中不存在的奇异态。这种施加于电子系统的周期性驱动被称为Floquet工程,可诱导拓扑能带结构和控制自旋相互作用。
研究组提出了一类磁涡旋中的Floquet态,源于涡旋核和微波磁振子之间的非线性相互作用。Floquet带通过涡旋核的周期性振荡产生,可通过直接驱动涡旋核或泵浦方位角磁振子模式来激发。对于后者,方位角模式通过非线性相互作用诱导核心旋转,从而重整化磁振子能带结构。这代表了Floquet带工程的自诱导机制,为研究和调控非线性磁振子动力学开辟了新途径。
附:英文原文
Title: Self-induced Floquet magnons in magnetic vortices
Author: Christopher Heins, Lukas Krber, Joo-Von Kim, Thibaut Devolder, Johan H. Mentink, Attila Kákay, Jürgen Fassbender, Katrin Schultheiss, Helmut Schultheiss
Issue&Volume: 2026-01-08
Abstract: Driving condensed matter systems with periodic electromagnetic fields can result in exotic states not found in equilibrium. Termed Floquet engineering, such periodic driving applied to electronic systems can induce topological band structures and control spin interactions. In this study, we present a class of Floquet states in a magnetic vortex that arise from nonlinear interactions between the vortex core and microwave magnons. Floquet bands emerge through the periodic oscillation of the core, which can be initiated by either driving the core directly or pumping azimuthal magnon modes. For the latter, the azimuthal modes induce core gyration through nonlinear interactions, which in turn renormalizes the magnon band structure. This represents a self-induced mechanism for Floquet band engineering and opens avenues to study and control nonlinear magnon dynamics.
DOI: adq9891
Source: https://www.science.org/doi/10.1126/science.adq9891


